

The Cascade of Determining Precipitation Hotspots of Summertime Afternoon Thunderstorms in Northern Taiwan: from Synoptic Scale to Local Scale Yu-Hsiang Chang, Wei-Ting Chen Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan

Abstract

This study investigates the determination of precipitation hotspots (PH) during summertime afternoon thunderstorms (ATS) in northern Taiwan, tracing a cascade across multiple scales. Hierarchical clustering analysis identifies six clusters of PH that capture the historical event variability. Synoptic-scale weather composites reveal a correlation between cluster occurrence and the extent of the western subtropical high-pressure system (WPSH) and the 700hPa moisture transport pattern. To explore finer-scale mechanism, we classified 90 cases from the TaiwanVVM output by [Chang et al., 2021] into the aforementioned six clusters, focusing on four of them. Local circulation induced by orography and sea breezes determines convection triggering locations, while wind shear between surface and mid-levels influences convection propagation. The variability among these factors results in varying PH patterns. Further analysis could provide a methodology bridging synoptic and local characteristics from different approaches.

Introduction

- Environmental factors across multiple scales may influence the formation, enhancement, and precipitation of ATS in northern Taiwan.
 - The weak synoptic environment, conducive to ATS occurrence, is associated with the extension of the ridge of the west Pacific subtropical high pressure **(WPSH)** [e.g. Miao and Yang, 2020].

Variability of Vertical Profiles TCCIP Clusters in ERA5

- **Similar Thermodynamic Characteristics**
 - Convective instability allow in all clusters
 - RH exhibits variation correlated to vapor transport
- Variant Dynamic Structure
 - Different wind direction at low-level
- Local circulation has been recognized as crucial one that determine the intensity and the PH of ATS [e.g., Kuo and Wu, 2019].
- Objective: To investigate the **potential mechanisms determining the PH during ATS events**. We examined the several associated factors across various scales, and present the environmental characteristics associated with different PH patterns.

Data & Methodology

- Study Area: Northern Taiwan (120.7°E-122.1°E, 24.4°N-25.4°N)
- **Case Selection:** 961 ATS Events in 35-yr period
 - Weak-synoptic weather days in TAD [Su et al., 2018] in MJJAS, 1986-2020
 - Higher rainfall in 13-24LT than in 01-12LT in CWB rain gauge observations
 - Exclude Days with average accumulated rainfall > 1mm in 01-12LT
- Identify Precipitation Hotspot: Clustering Analysis
 - TCCIP 1-km Gridded Historical Daily Precipitation Dataset v2
 - Normalized by dividing values by the maximum of the day (focus on spatial pattern)
 - Hierarchical cluster analysis: Ward's linkage, prescribed cluster # = 6
- Identify the Favorable Synoptic Environment for Hotspots: Weather Composites
- Utilize daily mean of ERA5 Reanalysis Dataset
- Make composites in the dates of respective clusters
- Analyze the Local Circulation for the Hotspots: TaiwanVVM Simulations
- Utilize the 90 cases of TaiwanVVM output in [Chang et al., 2021]
- Classify them as the type of which the least RMSE to the clusters aforementioned
- Present the subdaily evolution of local circulation in each classification type

Precipitation Hotspot Clusters

• Different magnitude of wind shear 700hPa-1000hPa Wind Shear

RH [%]

Classification of TaiwanVVM Simulations

Typical Precipitation Hotspots

• Primarily orographically locked; aligned with different terrain features

Intensity and Frequency

- Daily rainfall varies apparently both within and between clusters
- 961 ATS events accounted for 17.9% of summertime, while PH Type 0 (widely spread) and Type 5 (west SMR) occurred the most often.

Synoptic Weather Composites 500hPa Height = 5880[gpm], w/ 1xstd

— Туре 0 (58.5%)

WPSH Extent at 500hPa

- Inhibit other synoptic systems • Affect variability of dynamics • 0, 2, 5: westward & northward 1, 3, 4: farther from Taiwan • Streamline at 700hPa • Correlated to WPSH extent
 - Determine the direction of the upstream
- Moisture Transport
- Sensitive to the upstream with various humidity
- 0,1,5: limited vapor from Pacific
- 2,3: more from southern China
- 4: most vapor from SCS
- The magnitude is correlated to the precipitation intensity

50°N Type 1 (5.0%)

- 15.0

13.0

Type 5

Type 3

Type 2

Туре

4.4%

20.1%

58.5%

— Type 2 (6.5%)

And	24.8*N - Contour: Elevation = 200m(yellow) 1500m(gold) 24.4*N - 24.8*N -	YE 120 68F 121 FF 121 27F 121 67F 121 67F 121 67F 122 7F				- 11.0 - 9.0 - 7.0 - 3.0 - 1.0 - 0.5 - 0.2	
	РН	Widely Spread (Weak)	Central SMR & Taipei Basin	Overall Strong	West SMR		
•E 150°E	Wind Shear	Southerly in upper level	Evident	Weak in upper level	Evident in opposite direction		
and the second second	Development	Toward north but	Propagation toward	Continued inflow triggering	Blocked in the west		
and a second	Propagation	inapparent propagation	Northeast & Basin	Stationary	Toward west		
ina 90	 Cross-section analysis to demonstrate the variability in vertical structure of convection and their propagation among the PH clusters Investigating the special clusters: Type 1 (Yilan) and Type 4 (Northeast SMR) Quantitative estimation of the criteria of determining PH across multiple scales 						
- 80	 Provid 	 Provide the methodology connecting the synoptic clusters in historical data and the synoptic clust					
ific	local circulations in future semi-idealized simulations						
- 70	 Acknowledgement Supported by 國科會優秀年輕學者計畫(NSTC-109-2628-M-002-003-MY3), 國科會卓越領航計畫山區雲氣候計畫(NSTC-110-2123-M-002-007), and 國科會大專學生研究計畫(NSTC-111-2813-C-002-145-M). We thank Taiwan Climate Change Projection and Information Platform (TCCIP) project for providing the gridded precipitation data. References Chang, YH., et al. (2021) Tracking the Influence of Cloud Condensation Nuclei on Summer Diurnal Precipitating Systems over Complex Topography in Taiwan. Atmos. Chem. Phys. 21:16709–16725. Chang, YH. (2023) Explore the Relationship of the Long-term Change of Summertime Afternoon Thunderstorms in Northern Taiwan and the Environmental Conditions. Bachelor Thesis. National Taiwan University. 						

- Kuo, K.-T.; Wu, C.-M. (2019). The Precipitation Hotspots of Afternoon Thunderstorms over the Taipei Basin: Idealized Numerical Simulations. J of Meteo. Soc. Japan, 97(2), 501–517.
- Miao, J.-E.; Yang, M.-J. (2020). A modeling study of the severe afternoon thunderstorm event at Taipei on 14 June 2015: The roles of sea breeze, microphysics, and terrain. Journal of the Meteorological Society of Japan. Ser. II. Su, S.-H.; Chu, J.-L.; Yo, T.-S.; Lin, L.-Y. (2018). Identification of synoptic weather types over Taiwan area with multiple classifiers. Atmos. Sci. Lett, 19, e861